6,287 research outputs found

    A Convex Model for Edge-Histogram Specification with Applications to Edge-preserving Smoothing

    Full text link
    The goal of edge-histogram specification is to find an image whose edge image has a histogram that matches a given edge-histogram as much as possible. Mignotte has proposed a non-convex model for the problem [M. Mignotte. An energy-based model for the image edge-histogram specification problem. IEEE Transactions on Image Processing, 21(1):379--386, 2012]. In his work, edge magnitudes of an input image are first modified by histogram specification to match the given edge-histogram. Then, a non-convex model is minimized to find an output image whose edge-histogram matches the modified edge-histogram. The non-convexity of the model hinders the computations and the inclusion of useful constraints such as the dynamic range constraint. In this paper, instead of considering edge magnitudes, we directly consider the image gradients and propose a convex model based on them. Furthermore, we include additional constraints in our model based on different applications. The convexity of our model allows us to compute the output image efficiently using either Alternating Direction Method of Multipliers or Fast Iterative Shrinkage-Thresholding Algorithm. We consider several applications in edge-preserving smoothing including image abstraction, edge extraction, details exaggeration, and documents scan-through removal. Numerical results are given to illustrate that our method successfully produces decent results efficiently

    Strategies for the Study of Neuropsychiatric Disorders Using Endophenotypes in Developing Countries: A Potential Databank from China

    Get PDF
    Endophenotypic research can be considered to be one of the most promising strategies to bridge the gap between genomic complexity and the phenotypic heterogeneity observed in neuropsychiatric disorders. However, despite the promising and systematic work initiated by our western counterparts, this research strategy is still not well known in developing countries. Thus, the purpose of this paper is to argue the merits and promise of a potentially useful database on phenotypes and endophenotypes for developing countries

    Performance of a parallel code for the Euler equations on hypercube computers

    Get PDF
    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made

    Imaging C. elegans Embryos using an Epifluorescent Microscope and Open Source Software

    Get PDF
    Cellular processes, such as chromosome assembly, segregation and cytokinesis,are inherently dynamic. Time-lapse imaging of living cells, using fluorescent-labeled reporter proteins or differential interference contrast (DIC) microscopy, allows for the examination of the temporal progression of these dynamic events which is otherwise inferred from analysis of fixed samples1,2. Moreover, the study of the developmental regulations of cellular processes necessitates conducting time-lapse experiments on an intact organism during development. The Caenorhabiditis elegans embryo is light-transparent and has a rapid, invariant developmental program with a known cell lineage3, thus providing an ideal experiment model for studying questions in cell biology4,5and development6-9. C. elegans is amendable to genetic manipulation by forward genetics (based on random mutagenesis10,11) and reverse genetics to target specific genes (based on RNAi-mediated interference and targeted mutagenesis12-15). In addition, transgenic animals can be readily created to express fluorescently tagged proteins or reporters16,17. These traits combine to make it easy to identify the genetic pathways regulating fundamental cellular and developmental processes in vivo18-21. In this protocol we present methods for live imaging of C. elegans embryos using DIC optics or GFP fluorescence on a compound epifluorescent microscope. We demonstrate the ease with which readily available microscopes, typically used for fixed sample imaging, can also be applied for time-lapse analysis using open-source software to automate the imaging process

    Non-invasive ultrasound monitoring of regional carotid wall structure and deformation in atherosclerosis

    Get PDF
    Thesis (Ph. D.)--Harvard--Massachusetts Institute of Technology Division of Health Sciences and Technology, 2001.Includes bibliographical references (p. 223-242).Atherosclerosis is characterized by local remodeling of arterial structure and distensibility. Developing lesions either progress gradually to compromise tissue perfusion or rupture suddenly to cause catastrophic myocardial infarction or stroke. Reliable measurement of changes in arterial structure and composition is required for assessment of disease progression. Non-invasive carotid ultrasound can image the heterogeneity of wall structure and distensibility caused by atherosclerosis. However, this capability has not been utilized for clinical monitoring because of speckle noise and other artifacts. Clinical measures focus instead on average wall thickness and diameter distension in the distal common carotid to reduce sensitivity to noise. The goal of our research was to develop an effective system for reliable regional structure and deformation measurements since these are more sensitive indicators of disease progression. We constructed a system for freehand ultrasound scanning based on custom software which simultaneously acquires real-time image sequences and 3D frame localization data from an electromagnetic spatial localizer. With finite element modeling, we evaluated candidate measures of regional wall deformation.(cont.) Finally, we developed a multi-step scheme for robust estimation of local wall structure and deformation. This new strategy is based on a directionally-sensitive segmentation functional and a motion-region-of-interest constrained optical flow algorithm. We validated this estimator with simulated images and clinical ultrasound data. The results show structure estimates that are accurate and precise, with inter- and intra-observer reproducibility surpassing existing methods. Estimates of wall velocity and deformation likewise show good overall accuracy and precision. We present results from a proof-of-principle evaluation conducted in a pilot study of normal subjects and clinical patients. For one example, we demonstrate the combination of 2D image processing with 3D frame localization for visualization of the carotid volume. With slice localization, estimates of carotid wall structure and deformation can be derived for all axial positions along the carotid artery. The elements developed here provide the tools necessary for reliable quantification of regional wall structure and composition changes which result from atherosclerosis.by Raymond C. Chan.Ph.D

    Model-based estimation of arterial diameter from X-ray angiograms

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaves 122-124).by Raymond C. Chan.M.S

    Degradation of the Deubiquitinating Enzyme USP33 is Mediated by p97 and the Ubiquitin Ligase HERC2

    Get PDF
    Because the deubiquitinating enzyme USP33 is involved in several important cellular processes (β-adrenergic receptor recycling, centrosome amplification, RalB signaling, and cancer cell migration), its levels must be carefully regulated. Using quantitative mass spectrometry, we found that the intracellular level of USP33 is highly sensitive to the activity of p97. Knockdown or chemical inhibition of p97 causes robust accumulation of USP33 due to inhibition of its degradation. The p97 adaptor complex involved in this function is the Ufd1-Npl4 heterodimer. Furthermore, we identified HERC2, a HECT-domain-containing E3 ligase, as responsible for polyubiquitination of USP33. Inhibition of p97 causes accumulation of polyubiquitinated USP33, suggesting that p97 is required for post-ubiquitination processing. Thus, our study has identified several key molecules that control USP33 degradation within the ubiquitin-proteasome system

    The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1

    Get PDF
    Dynamin-related protein 1 (Drp1) is the GTP-hydrolyzing mechanoenzyme that catalyzes mitochondrial fission in the cell. Residing in the cytosol as dimers and tetramers, Drp1 is recruited by receptors on the mitochondrial outer membrane, where it further assembles into a helical ring that drives division via GTP-dependent constriction. The Drp1 receptor Mff is a major regulator of mitochondrial fission, and its overexpression results in increased fission. In contrast, the alternative Drp1 receptors MiD51 and MiD49 appear to recruit inactive forms of Drp1, because their overexpression inhibits fission. Using genetic and biochemical assays, we studied the interaction of Drp1 with Mff. We show the insert B region of Drp1 inhibits Mff-Drp1 interactions, such that recombinant Drp1 mutants lacking insert B form a stable complex with Mff. Mff cannot bind to assembly-deficient mutants of Drp1, suggesting that Mff selectively interacts with higher order complexes of Drp1. In contrast, the alternative Drp1 receptors MiD51 and MiD49 can recruit Drp1 dimers. Therefore, Drp1 recruitment by Mff versus MiD51 and MiD49 may result in different outcomes because they recruit different subpopulations of Drp1 from the cytosol

    Schizotypy as An Organizing Framework for Social and Affective Sciences

    Get PDF
    Schizotypy, defined in terms of commonly occurring personality traits related to the schizophrenia spectrum, has been an important construct for understanding the neurodevelopment and stress-diathesis of schizophrenia. However, as schizotypy nears its sixth decade of application, it is important to acknowledge its impressively rich literature accumulating outside of schizophrenia research. In this article, we make the case that schizotypy has considerable potential as a conceptual framework for understanding individual differences in affective and social functions beyond those directly involved in schizophrenia spectrum pathology. This case is predicated on (a) a burgeoning literature noting anomalies in a wide range of social functioning, affiliative, positive and negative emotional, expressive, and social cognitive systems, (b) practical and methodological features associated with schizotypy research that help facilitate empirical investigation, and (c) close ties to theoretical constructs of central importance to affective and social science (eg, stress diathesis, neural compensation). We highlight recent schizotypy research, ie providing insight into the nature of affective and social systems more generally. This includes current efforts to clarify the neurodevelopmental, neurobiological, and psychological underpinnings of affiliative drives, hedonic capacity, social cognition, and stress responsivity systems. Additionally, we discuss neural compensatory and resilience factors that may mitigate the expression of stress-diathesis and functional outcome, and highlight schizotypy's potential role for understanding cultural determinants of social and affective function

    Changes in specific metabolic pathways are essential steps in the early apoptotic process in the liver

    Get PDF
    the immunosuppressant Cyclosporine A (CsA), we used multinuclear NMR spectroscopy and molecular studies to characterize metabolic pathways in mice liver during anti-Fas-induced apoptosis. An upregulation of specific metabolic pathways of glucose was the earliest indicator of the effect of Fas on the liver. CsA prevented apoptosis and energy failure at late stages, while the reversal of Fas-induced metabolic upregulation at early stages preceded the protective effect of EGF on programmed cell death. These phenomena provide useful hints for the understanding of early mechanisms controlling apoptotic cell death
    corecore